Skip to content

Writing a dataset definition

In this section, you will write the following dataset definition. It selects the date and the code of each patient's most recent asthma medication, for all patients born on or before 31 December 1999.

from ehrql import create_dataset
from ehrql.tables.beta.core import patients, medications

dataset = create_dataset()

dataset.define_population(patients.date_of_birth.is_on_or_before("1999-12-31"))

asthma_codes = ["39113311000001107", "39113611000001102"]
latest_asthma_med = (
    medications.where(medications.dmd_code.is_in(asthma_codes))
    .sort_by(medications.date)
    .last_for_patient()
)

dataset.asthma_med_date = latest_asthma_med.date
dataset.asthma_med_code = latest_asthma_med.dmd_code

Open the dataset definition🔗

  1. Click dataset_definition.py in the Explorer towards the top left of the codespace

A screenshot of VS Code, showing an empty dataset definition

For the remainder of this section, you should type the code into dataset_definition.py.

Interact with the code in the sandbox

As well as typing the code into dataset_definition.py, you can interact with the code in the sandbox. Remember, when you see >>>, you should type the code that follows into the sandbox and press Enter.

Import the create_dataset function🔗

from ehrql import create_dataset
Import the create_dataset function
>>> from ehrql import create_dataset

Import the tables🔗

The patients table has one row per patient. The medications table has many rows per patient.

from ehrql.tables.beta.core import patients, medications
Import the tables
>>> from ehrql.tables.beta.core import patients, medications

Create the dataset🔗

dataset = create_dataset()
Create the dataset
>>> dataset = create_dataset()
>>> dataset
Dataset()

Define the population🔗

Define the population as all patients born on or before 31 December 1999.

dataset.define_population(patients.date_of_birth.is_on_or_before("1999-12-31"))
Define the population

.define_population takes a population condition in the form of a boolean column. However, patients.date_of_birth is a date column.

>>> patients.date_of_birth
0 | 1973-07-01
1 | 1948-03-01
2 | 2003-04-01
3 | 2007-06-01
4 | 1938-10-01
5 | 1994-04-01
6 | 1953-05-01
7 | 1992-08-01
8 | 1931-10-01
9 | 1979-04-01

To transform a date column into a boolean column, use .is_on_or_before with a date.

>>> patients.date_of_birth.is_on_or_before("1999-12-31")
0 | True
1 | True
2 | False
3 | False
4 | True
5 | True
6 | True
7 | True
8 | True
9 | True

Compare the patients in the boolean column with the patients in the dataset, after defining the population.

>>> dataset.define_population(patients.date_of_birth.is_on_or_before("1999-12-31"))
>>> dataset
patient_id
-----------------
0
1
4
5
6
7
8
9

Notice that patients with True in the boolean column are included in the population; and patients with False in the boolean column are excluded from the population.

Select each patient's most recent asthma medication🔗

Define a list of asthma codes. Filter the medications table, so that it contains rows that match the asthma codes on the list. Sort the resulting table by date, so that the most recent asthma medication is the last row for each patient. From the resulting table, select the last row for each patient. The result is a table that contains each patient's most recent asthma medication.

asthma_codes = ["39113311000001107", "39113611000001102"]
latest_asthma_med = (
    medications.where(medications.dmd_code.is_in(asthma_codes))
    .sort_by(medications.date)
    .last_for_patient()
)
Unpack the filter, the sort, and the select

Define a list of asthma codes.

>>> asthma_codes = ["39113311000001107", "39113611000001102"]

medications.dmd_code is a code column.

>>> medications.dmd_code
0 | 0 | 39113611000001102
1 | 1 | 39113611000001102
1 | 2 | 39113311000001107
1 | 3 | 22777311000001105
3 | 4 | 22777311000001105
4 | 5 | 39113611000001102
5 | 6 | 3484711000001105
5 | 7 | 39113611000001102
7 | 8 | 3484711000001105
9 | 9 | 3484711000001105

Create a filter condition in the form of a boolean column.

>>> medications.dmd_code.is_in(asthma_codes)
0 | 0 | True
1 | 1 | True
1 | 2 | True
1 | 3 | False
3 | 4 | False
4 | 5 | True
5 | 6 | False
5 | 7 | True
7 | 8 | False
9 | 9 | False

Filter the medications table, so that it contains rows that match the asthma codes on the list.

>>> medications.where(medications.dmd_code.is_in(asthma_codes))
patient_id        | row_id            | date              | dmd_code
------------------+-------------------+-------------------+------------------
0                 | 0                 | 2014-01-11        | 39113611000001102
1                 | 1                 | 2015-08-06        | 39113611000001102
1                 | 2                 | 2018-09-21        | 39113311000001107
4                 | 5                 | 2017-05-11        | 39113611000001102
5                 | 7                 | 2019-07-06        | 39113611000001102

Sort the resulting table by date, so that the most recent asthma medication is the last row for each patient.

>>> medications.where(medications.dmd_code.is_in(asthma_codes)).sort_by(medications.date)
patient_id        | row_id            | date              | dmd_code
------------------+-------------------+-------------------+------------------
0                 | 0                 | 2014-01-11        | 39113611000001102
1                 | 1                 | 2015-08-06        | 39113611000001102
1                 | 2                 | 2018-09-21        | 39113311000001107
4                 | 5                 | 2017-05-11        | 39113611000001102
5                 | 7                 | 2019-07-06        | 39113611000001102

From the resulting table, select the last row for each patient.

>>> medications.where(medications.dmd_code.is_in(asthma_codes)).sort_by(medications.date).last_for_patient()
patient_id        | date              | dmd_code
------------------+-------------------+------------------
0                 | 2014-01-11        | 39113611000001102
1                 | 2018-09-21        | 39113311000001107
4                 | 2017-05-11        | 39113611000001102
5                 | 2019-07-06        | 39113611000001102

Add the date column to the dataset🔗

Select the date column and add it to the dataset.

dataset.asthma_med_date = latest_asthma_med.date
Add the date column to the dataset
>>> dataset.asthma_med_date = latest_asthma_med.date
>>> dataset
patient_id        | asthma_med_date
------------------+------------------
0                 | 2014-01-11
1                 | 2018-09-21
4                 | 2017-05-11
5                 | 2019-07-06
6                 | None
7                 | None
8                 | None
9                 | None

Add the code column to the dataset🔗

Select the code column and add it to the dataset.

dataset.asthma_med_code = latest_asthma_med.dmd_code
Add the code column to the dataset
>>> dataset.asthma_med_code = latest_asthma_med.dmd_code
>>> dataset
patient_id        | asthma_med_date   | asthma_med_code
------------------+-------------------+------------------
0                 | 2014-01-11        | 39113611000001102
1                 | 2018-09-21        | 39113311000001107
4                 | 2017-05-11        | 39113611000001102
5                 | 2019-07-06        | 39113611000001102
6                 | None              | None
7                 | None              | None
8                 | None              | None
9                 | None              | None

Save the dataset definition🔗

  1. Click the menu icon towards the top left of the codespace

    VS Code's menu icon

  2. Click File > Save

Exit the sandbox🔗

Exit the sandbox and return to the terminal.

>>> quit()

A screenshot of VS Code, showing the terminal